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In this study, the impact of bacterial and fungal processes on 14C-hexadecane mineralisation was investigated
in weathered hydrocarbon contaminated soil. The extent of 14C-hexadecane mineralisation varied depending
on the bioremediation strategy employed. Under enhanced natural attenuation conditions, 14C-hexadecane
mineralisation after 98 days was 8.5±3.7% compared to b1.2% without nitrogen and phosphorus additions.
14C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9±2.4%) which
also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weath-
ered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources
(Tween 80, sawdust, compost, pea straw), fungal 14C-hexadecane mineralisation was negligible when sodi-
um azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was
inhibited through nystatin additions, 14C-hexadecane mineralisation ranged from 6.5±0.2 to 35.8±3.8%
after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a
reduction in bacterial diversity (33–37%) compared to microcosms supplemented with nystatin or microcosms
without inhibitory supplements. However, alkB bacterial groupswere undetected in sodiumazide supplemented
microcosms, highlighting the important role of this bacterial group in 14C-hexadecane mineralisation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Hydrocarbon contamination of soil is well studied in terms of
its toxic effects on soil ecological processes, macro and micro-
organisms and associated human health risks due to the presence of
recalcitrant fractions such as long-chain aliphatic and aromatic
hydrocarbons (Keith and Telliard, 1979; Peng et al., 2009; Sheppard
et al., 2011). Although soil microbial groups are capable of degrading
a variety of hydrocarbons (Boonchan et al., 2000; Genovese et al.,
2008; Wu et al., 2008) this process is often slow, with bioremediation
timeframes of months to years. This is due to a number of factors
including environmental nutrient limitations, associated hydrocarbon
toxicity and the presence of inhibitory substances such as co-
contaminants (e.g. lead) which may inhibit the activities of autoch-
thonous hydrocarbon degraders (Al-Saleh and Obuekwe, 2005).
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Bioremediation is a well established cost effective and compara-
tively environmentally friendlymethod of treating/detoxifying hydro-
carbon contaminated soils (Sanscartier et al., 2009). Bioremediation
involves exploiting the natural capacity of microorganisms to degrade
hydrocarbons by either stimulating this capacity in soils with nutri-
ents and surfactants or by supplying microorganisms capable of
degrading the contaminant when this capacity is limited (Bento et
al., 2005). Prior to any successful bioremediation, it is often necessary
to conduct treatability tests in order to determine the suitability of
bioremediation strategies and to estimate the efficacy of the bioreme-
diation process (Diplock et al., 2009). This may involve conducting
small scale laboratory studies during which different parameters
such as soil respiration, mineralisation rates, changes in hydrocarbon
degrading populations and total petroleum hydrocarbon reduction
are monitored and correlated with hydrocarbon removal (Diplock et
al., 2009; Towell et al., 2011). The data generated from these experi-
ments, combined with appropriate kinetic modelling, can then be
used as a predictor for large scale field based studies (Beolchini et al.,
2010; Diplock et al., 2009).

The detection of specific microbial groups or capacity (directly or
indirectly) to degrade specific hydrocarbons is a measure of the biore-
mediation potential of a given matrix. Bacterial groups are thought to
be the major mediators in hydrocarbon biodegradation (Andreoni et
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al., 2000; Song et al., 1986; Walker and Colwell, 1976; Whyte et al.,
1997). Other reports have also indicated that bacteria play important
roles in hydrocarbon mineralisation (Aislabie et al., 2008; Hilyard
et al., 2008) despite the fact that fungi may also mineralize hydrocar-
bons (Volke-Sepulveda et al., 2006). Defining the roles of different soil
microbial groups in a polluted environment is a challenge as the pres-
ence of an organism is not necessarily an indication of the expression
of degradative capacity. Few investigations of microbial roles in hy-
drocarbon degradation have been performed by specifically inhibiting
microbial groups in order to clearly define their roles in the biodegra-
dation process.

To address this question, in this study we investigated the roles of
different microbial groups in 14C-hexadecane mineralisation experi-
ments by inhibiting either bacterial or fungal groups in laboratory
based soil microcosms. In addition, the impact of these inhibitions
on microbial community dynamics was assessed using culture inde-
pendent molecular microbiology tools.

2. Materials and methods

2.1. Sampling and soil characterisation

Hydrocarbon contaminated soil was sampled from a former oil
refinery site in Australia. Historically contaminated soil (~30 kg)
was collected from stockpiled material on-site with a bulk soil sample
being collected from the top 20 cm of the stockpile. The bulk soil
(b2 mm) had an initial hydrocarbon concentration of 15 g kg−1

(C10–C40): the concentration of various equivalent hydrocarbon
molecular weight ranges and other soil properties is listed in
Table 1. Determination of soil type was carried out using the method-
ology described by McDonald et al. (1990) while soil moisture con-
tent, water holding capacity, pH and organic matter content were
determined using standard methods (Rayment and Higginson, 1992).

2.2. Total petroleum hydrocarbon analysis

An accelerated solvent extraction method (ASE200 Accelerated
Solvent Extraction System, Dionex Pty Ltd, Lane Cove, NSW, Australia)
was used to extract hydrocarbons from contaminated soils. Prior to
use, 1 g of solvent washed silica gel (Davisil, Sigma-Aldrich Pty Ltd,
Sydney, Australia) sandwiched between 2 cellulose filter circles was
added to 11 mL ASE extraction cells. Inclusion of silica in the extrac-
tion step was found to assist in sample clean-up prior to GC analysis
of hydrocarbon extracts (data not shown). Freeze-dried soil (2–10 g)
was ground with diatomaceous earth (Dionex), weighed into extrac-
tion cells (on top of the silica layer) and surrogate (phenanthrene
100 mg mL−1) added prior to sealing. Soils were extracted using stan-
dard conditions (150 °C, 10.34 MPa, static time 5 min) and a solvent
Table 1
Physico-chemical characteristics of soil used in this study.

Property Value

Soil type Sandy loam
Sand, silt, clay (%) 70, 14, 16
Bulk density (g cm3) 1.50
Moisture content 17.0±0.2
pH (1:5, water) 7.2±0.1
pH (1:5, CaCl2) 6.8±0.2
Organic matter (%, LOI) 14.7±0.7
Nitrate (mg kg−1) b2.0
Phosphate (mg kg−1) b2.0
Sulphate (mg kg−1) 480
TPH (mg kg−1)
C10-C14 103
C15–C29 10 477
C29–C36 4444
C37–C40 533
mixture consisting of hexane:acetone (1:1 v/v). Soil extracts were
concentrated to dryness under a steady flow of nitrogen gas, resus-
pended in 2 mL of hexane:acetone (1:1 v/v), filtered through
0.45 μm Teflon syringe filters into 2 mL GC vials (Agilent Technologies
Australia, Forest Hills, VIC, Australia) prior to analysis.

Gas chromatograms of hydrocarbon extracts were generated using
an Agilent Technologies 7890A gas chromatograph with flame ionisa-
tion detector. Samples were separated using a 15 m×0.32 mm×
0.1 μm Zebron ZB-5HT (5% phenyl, 95% dimethylpolysiloxane) Inferno
column with a 5 m×0.25 mm inert guard column (Phenomenex
Australia, Lane Cove, NSW, Australia). Operating conditions were as
follows: The oven temperature was programmed at 40 °C for 3 min
followed by a linear increase to 375 °C at 25 °C min−1, held at 375 °C
for 5 min. Injector and detector temperatures were maintained at 300
and 380 °C, respectively. Hydrocarbon concentration was quantified
according to defined hydrocarbon fractional ranges (C10–14, C15–28,
C29–36, C37–40) using Window defining standards (Accustandard Inc.,
New Haven, CT, USA). Hydrocarbon concentrations were reported per
g freeze-dried soil. TPH concentration was quantified according to
Dandie et al. (2010). Surrogate recovery during TPH quantification ran-
ged from94 to 103%while results of duplicate analysis of the same sam-
ple showed a standard deviation of less than 8%.

2.3. Mineralisation assays

Mineralisation of 14C-hexadecane by indigenous soil microorgan-
isms in TPH-contaminated soil was determined in triplicate biometer
flasks (Bellco Glass). Contaminated soil (50 g moistened to 60% water
holding capacity) was supplemented with 1.0 μCi of 14C-hexadecane
with and without the addition of soil supplements (nutrients, surfac-
tants, additional carbon sources) (Table 2). Control flasks, to assess
abiotic hexadecane mineralisation, consisted of contaminated soil to
which 2% HgCl2 was added. When inhibition of bacterial or fungal
growth was required, sodium azide or nystatin was added at 10 and
2 g kg−1 respectively. Soils were incubated at room temperature
for up to 98 days and the evolution of 14CO2 (trapped in 1 M NaOH)
monitored routinely over the incubation period. Aliquots (1 ml)
from 14CO2 traps were combined with scintillation cocktail (ReadySafe,
Beckman-Coulter, USA) and the samples were counted and quantified
by liquid scintillation counting (Beckman LS3801) using standard
counting protocols and automatic quenching correction (Macleod and
Semple, 2002).

2.4. DNA extraction and PCR

Genomic DNA was extracted from replicate soil samples from non-
labelled experiments using a DNA isolation kit (MoBio PowerSoil,
Carlsbad, CA, USA) according to the manufacturer's protocol at selected
Table 2
Treatments assessed during 14C-hexadecane mineralisation assays.

Treatment Amendments

Nutrients Surfactants Sawdust Compost Pea Straw

NA – – – – –

ENAa C:N:P 100:5:0.5 – – – –

ENA–T80b C:N:P 100:5:0.5 1% Tween80 – – –

ENA–SDc C:N:P 100:5:0.5 – 5% w/w – –

ENA-Cd C:N:P 100:5:0.5 – – 25% w/w –

ENA-PSe C:N:P 100:5:0.5 – – – 5% w/w

a Enhanced natural attenuation treatments were prepared by supplementing TPH-
contaminated soil with nitrogen ([NH4]2SO4) and phosphorus (K2HPO4, KH2PO4) to
achieve a C:N:P molar ratio of 100:5:0.5.

b Tween 80 was added to ENA microcosms to achieve a 1% Tween 80 concentration
in soil solution.

c Sawdust was added to ENA microcosms at a 5% w/w loading.
d Compost was added to ENA microcosms at a 25% w/w loading.
e Pea straw was added to ENA microcosms at a 5% w/w loading.
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time points (day 0, 3, 5, 7, 14, 21, 28, 56 and 98 days) to evaluate the
effect of the different inhibitors on microbial community dynamics.
PCR amplification of 16S rDNA genes was performed using primer
pair 341FGC and 518R (Muyzer et al., 1993) as described by
(Sheppard et al., 2011). Alkane degrading communities (alkB genes in
the lineage of Pseuodmonas oleovorans GPo1) were evaluated using
TS2S, Deg1RE and deg1RE GC primers as described by (Smits et al.,
1999) using a semi nested approach described by Makadia et al.
(2011). DNA was extracted from pure fungal cultures using the
phenol-chloroform-bead beating method and PCR carried out with ITS
1 and ITS 4 (Anderson and Parkin, 2007) using the following thermocy-
cling conditions; 1 cycle at 95 °C for 5 min, 30 cycles of 45 s at 94 °C,
45 s at 58 °C and 45 s at 72 °C and a final extension at 72 °C for 10 min.

2.5. DGGE and sequence analysis

DGGE was carried out on selected PCR amplicons on a Universal
Mutation Detection System D-code apparatus (Biorad, CA, USA)
with a 9% polyacrylamide gel using a 40–60% denaturing gradient at
60 °C for 20 h. DGGE gels were silver stained (Girvan et al., 2003),
scanned and saved as Tiff files with an Epson V700 scanner. Digitised
gel images were then analysed with TotalLab analysis package (Non-
linear Dynamics, USA). Unweighted Pair Group with Mathematical
Averages (UPGMA) dendrograms were then generated with Totallab
and bacterial community diversity determined with ShannonWeaver
Diversity Index (H′) using the formula — ∑ pi LN pi (Girvan et al.,
2003). Where necessary data were transformed and statistical signif-
icance was determined in replicate samples comparison by either T
test or analysis of variance (ANOVA) and Tukey tests (Sigma Stat
2.03, Systat, London). Bands of interests were excised and incubated
in nuclease free water overnight at 70 °C and re-amplified with
341F-GC and 518R and their sequence identities determined as
described in (Aleer et al., 2010).

3. Results and discussion

3.1. Hexadecane mineralisation under natural and enhanced natural
attenuation conditions

The extent of 14C-hexadecane mineralisation by the indigenous
soil microflora under natural attenuation and enhanced natural atten-
uation conditions is shown in Fig. 1. In unamended soils (natural
attenuation), 14C-hexadecane mineralisation was negligible (~1.2%
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Fig. 1. 14C-hexadecane mineralisation in weathered TPH-contaminated soil incubated
under natural attenuation conditions (○), in the presence of nutrients (enhanced nat-
ural attenuation;●) and under enhanced natural attenuation conditions supplemented
with 1% Tween 80 (■). 14C-hexadecane mineralisation is also shown for mercuric
chloride-killed controls (□).
of the radiolabelled carbon was evolved as 14CO2 after 98 days) indi-
cating that microorganisms within the stockpiled soil were not capa-
ble of sustaining hydrocarbon mineralisation presumably due to
nutrient deficiencies. In contrast, 14C-hexadecane mineralisation
could be enhanced through the addition of nutrients (enhanced natu-
ral attenuation) with 8.5±3.7% of 14C-hexadecane being mineralised
after 98 days. Although the extent of 14C-hexadecane mineralisation
was improved through the addition of nitrogen and phosphorus,
presumably the limited 14C-hexadecane mineralisation was due to
hydrocarbon bioavailability constraints. Contaminant and nutrient
bioavailability are important factors that may limit hydrocarbon bio-
degradation in soils. Nitrogen and phosphorus are often limiting in
hydrocarbon polluted environments and the addition of these nutri-
ents have been shown to substantially enhance hydrocarbon minera-
lisation or degradation (Borresen and Rike, 2007; Roling et al., 2002).

Hydrocarbon bioavailability will influence the rate and extent of
ENA processes. If hydrocarbon desorption from the sorbed to the
aqueous phase is slow, the rate of degradation will be limited by
physico-chemical processes. The rate of desorption may, however,
be enhanced through the application of surfactants which increase
the solubility of hydrocarbons through micelle formation (Li and
Chen, 2009). As a result, further studies were conducted in ENA
soils to which Tween 80 (non-ionic surfactant) was amended to
determine the impact of surfactant addition on the rate and extent
of 14C-hexadecane mineralisation. In the presence of Tween 80, 14C-
hexadecane mineralisation was enhanced compared to ENA alone,
resulting in 28.9±2.4% of the radiolabelled carbon being evolved as
14CO2 after 98 days. Many reports have indicated that the addition of
synthetic and non synthetic surfactants can improve hydrocarbon
mineralisation and TPH removal from oil and sludge contaminated
environments (Davezza et al., 2011; Lai et al., 2009; Tahhan and
Abu-Ateih, 2009; Zhang et al., 2010). Hydrocarbon degradingmicroor-
ganisms are known to produce biosurfactants which aid dispersion of
hydrocarbons into small droplets (b0.22 μm) that are more accessible
to microorganisms (Cameotra and Singh, 2009; Partovinia et al.,
2010). Although the application of surfactants can inhibit degradation
in some cases (Franzetti et al., 2010), the exogenously supplied surfac-
tants in this study presumably increased the availability of 14C-
hexadecane from soil complexes, improvingmicrobial access resulting
in an increase in the extent of 14C-hexadecane mineralisation.

In addition to enhancing 14C-hexadecane mineralisation in stock-
pile soil, the addition of Tween 80 promoted the growth of a fungal
mat with the mat being identified as Phanerochaete chrysosporium
(data not shown). White rot fungi, as observed in Tween 80 augment-
ed soils, have been shown to have the ability to degrade a variety of
environmental pollutants (Faraco et al., 2009; Gao et al., 2010) as a
result of the production of non-specific extracellular enzymes used
for lignin degradation. However, the role of fungi (versus bacteria)
in the mineralisation of 14C-hexadecane in stockpiled soils was
unclear. As a result, subsequent experiments were designed to deter-
mine fungal and bacterial roles on 14C-hexadecane mineralisation.

3.2. Bacterial and fungal roles in hexadecane mineralisation

The presence of a fungal mat in surfactant amended microcosms
raised the possibility that soil fungi were important in 14C-hexadecane
mineralisation as soil fungi such as Aspergillus spp. and Phanerochaete
chrysosporium have been implicated in hydrocarbon (hexadecane) deg-
radation (Kanaly and Hur, 2006; Volke-Sepulveda et al., 2006). Earlier
reports byWalker and Colwell (1976) and Song et al. (1986) suggested
that soil bacteria rather than fungi were responsible for significant hex-
adecane mineralisation but these studies were conducted on soil with-
out any amendment to promote fungal growth. Therefore, in this study
the extent of 14C-hexadecane mineralisation was determined in soil
amended with sodium azide (to inhibit bacterial growth) or nystatin
(to inhibit fungal growth) to determine the role of bacteria and fungi
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in hydrocarbon biodegradation. In addition, 14C-hexadecane minerali-
sation was determined in soils without the addition of inhibitory sub-
stances to determine the impact of bacterial-fungal co-cultures
on 14C-hexadecane mineralisation. In order to stimulate fungal growth,
soil was amended with a variety of carbon sources, namely Tween 80,
sawdust, compost and pea straw.

The addition of Tween 80, sawdust, compost and pea straw to
stockpile soil (in the absence of nystatin) resulted in the enhanced
growth of indigenous fungal species based on visual observations. In
the presence of nystatin (an inhibitor of fungal activity), fungal
growth was not observed. When sodium azide was added to contam-
inated soil to inhibit bacterial activity, 14C-hexadecane mineralisation
was negligible (Fig. 2) indicating that fungal species, although able to
grow on the amended carbon sources, were unable to mineralise hex-
adecane. Conversely, when fungal growth was inhibited due to the
addition of nystatin, bacterial 14C-hexadecane mineralisation ranged
from 6.5±0.2 to 35.8±3.8% (after 98 days) depending on the sup-
plied amendment (Fig. 2). Excluding Tween 80 addition, there was
no significant difference (Pb0.05) in 14C-hexadecane mineralisation
between soil microcosms amended with different carbon sources
(sawdust, compost, pea straw). The decreased bacterial 14C-hexadecane
mineralisation in the sawdust, compost, pea straw amended micro-
cosms may be due to the preferential or co-utilisation of the additional
carbon supplied in the amendments over the target substrate (hexade-
cane). In the absence of sodium azide and nystatin (i.e. no inhibition of
bacterial or fungal species), 14C-hexadecanemineralisation as a result of
bacterial-fungal co-culture activity was similar to that observed for bac-
teria alone (Fig. 2) indicating that 14C-hexadecane mineralisation as a
result of fungal activity was negligible. Consequently, the observed fun-
gal mat was not responsible of the enhanced 14C-hexadecane minerali-
sation following Tween 80 addition with the development of the mat
due to fungal growth on the supplied carbon.

3.3. Bacterial community response to inhibition

The soil microbial community exists in a dynamic environment in
which there are different interactions between biotic and abiotic
components of the environment. Any alteration in a component
may have positive or negative effects on other components. As a
result, the bacterial community in ENA Tween 80 microcosms was
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Fig. 2. 14C-hexadecane mineralisation in weathered TPH-contaminated soil incubated
under enhanced natural attenuation conditions supplemented with various carbon
amendments. Sodium azide or nystatin was added to selected soil microcosms to
determine the impact of bacterial or fungal inhibition on hydrocarbon mineralisation.
The extent of 14C-hexadecane mineralisation for each soil treatment following
98 days incubation is shown for bacterial ( ), fungal (■) and no inhibition (□).
assessed for its response to inhibitory treatments. Other treatments
(e.g. sawdust, compost, pea straw amendments) were not assessed
as there was no significant difference in the extent of 14C-hexadecane
mineralisation between the ENA treatment alone and ENA supple-
mented with the aforementioned carbon sources. 16S rRNA gene
community profiles showed that the addition of sodium azide to con-
taminated soils resulted in partial inhibition of the bacterial commu-
nity (Fig. 3). It is difficult to achieve total inhibition or destruction
of soil microorganisms without sterilization at high temperature or
application of mercuric control and even when using those methods
it is impossible to selectively eliminate a particular group (as desired
in this study). However, the level of inhibition achieved in this study
with sodium azide was sufficient to cause changes in bacterial activi-
ties (Fig. 1) and diversity (Fig. 4).

The composite dendrogram in Fig. 3 illustrates that inhibiting spe-
cific microbial groups, either bacterial or fungal, caused distinct shifts
in the bacterial community. The effect of inhibition was largely negli-
gible within the first week (cluster 1) with significant shifts in the
microbial community being observed after this period. Bacterial inhi-
bition (BI) led to a significant reduction in bacterial abundance and
diversity (Pb0.05) (Fig. 4) leading to soil microcosms with sodium
azide forming a distinct cluster 2 (weeks 1–14) which was 45% simi-
lar to cluster 3 composed of fungal (FI) and non inhibited microcosms
(NI) (Fig. 3). The high similarity coefficients between FI and NI sam-
ples showed that inhibiting the fungal community, through nystatin
addition, did not cause a significant change in the bacterial communi-
ty. Analysis of dominant soil bacterial groups in the bacterial commu-
nity profiles with Tween 80 showed that the bacterial communities in
these microcosms were dominated by sequences similar to the gen-
era Alcanivorax and Pseudomonas (gammaproteobacteria) although
some sequences similar to Actinobacteria were also detected (data
not shown).

3.4. Assessment of alkane hydroxylase

Molecular methods targeting key genes involved in hydrocarbon
degradation can be useful in assessing the hydrocarbon degrading
potential of different environments and investigating microbial re-
sponses to hydrocarbon pollution. Alkane hydroxylase (alkB) systems
are involved in the initial steps of alkane (most common hydrocarbon
component) degradation with the gene (alkB) being widely found in
different microbial groups (Hamamura et al., 2008; van Beilen et al.,
2002). Targeting this gene would give useful information about the
impact of inhibitory substances on hydrocarbon degrading potential
of microbial communities. The PCR-assay for alkB bacterial groups
showed that they were not detectable in BI microcosms with Fig. 5
showing that these groups were detected in FI and NI microcosms.
The absence of these groups in BI microcosms was presumably related
to the application of sodium azide even although all bacterial groups
were not inhibited by its inclusion.While there are reports of the sensi-
tivity (inhibition) of microbial groups to hydrocarbon pollution (Leahy
and Colwell, 1990), the specific impacts on the expression (sensitivity)
of specific functional genes, such as alkB, have not been reported. How-
ever, alkB genes are detectable in hydrocarbon contaminated environ-
ments with increasing copy numbers of alkB genes being correlated
with hydrocarbon contamination (Salminen et al., 2008; Wasmund et
al., 2009). The frequency of genes (and microbial genotype) detected
in contaminated soils is a reflection of the contaminant composition
with the expression of alkB genes changing as the contaminant compo-
sition changed with time (Sotsky et al., 1994). The GPo1 alkB genes
(pp alkB) detected in this study are commonly found in contaminated
soils unlike other alkB variants (Rh alkB1, Rh alkB2, Ac alkM) which
are found in both contaminated and pristine soils (Aislabie et al.,
2006; Whyte et al., 2002). Therefore, it was possible that members of
the alkB bacterial community that were detected in soil when the
microcosms were initiated were important for hexadecane
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mineralisation (Marchant et al., 2006) (Fig. 1) and their inhibition con-
tributed to the lack of 14C-hexadecane mineralisation observed in BI
microcosms.
4. Conclusions

This study showed that treatment of soils using enhanced natural
attenuation alone may not be sufficient to significantly reduce hydro-
carbon concentrations as a result of contaminant bioavailability limi-
tations. In such cases, surfactant addition may facilitate enhanced
removal of hydrocarbons as in this study where the application of
Tween 80 increased 14C-hexadecane mineralisation from 9% to 36%
during a 98-day incubation period. Soil bacteria were also found to
be crucial for 14C-hexadecane mineralisation and alkB bacterial
groups were important in the mineralisation process. In contrast,
although fungal growth could be stimulated through the addition of
various carbon amendments, their role in 14C-hexadecane minerali-
sation was negligible.

image of Fig.�3


Fig. 5. UPGMA dendrogram of 16S rDNA based DGGE profiles of alkB bacterial community in inhibited and control microcosms following 98 days incubation. Scale refers to
similarity percentages.
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